Tail chimeras of Dictyostelium myosin II support cytokinesis and other myosin II activities but not full development.
نویسندگان
چکیده
Dictyostelium lacking myosin II cannot grow in suspension culture, develop beyond the mound stage or cap concanavalin A receptors and chemotaxis is impaired. Recently, we showed that the actin-activated MgATPase activity of myosin chimeras in which the tail domain of Dictyostelium myosin II heavy chain is replaced by the tail domain of either Acanthamoeba or chicken smooth muscle myosin II is unregulated and about 20 times higher than wild-type myosin. The Acanthamoeba chimera forms short bipolar filaments similar to, but shorter than, filaments of Dictyostelium myosin and the smooth muscle chimera forms much larger side-polar filaments. We now find that the Acanthamoeba chimera expressed in myosin null cells localizes to the periphery of vegetative amoeba similarly to wild-type myosin but the smooth muscle chimera is heavily concentrated in a single cortical patch. Despite their different tail sequences and filament structures and different localization of the smooth muscle chimera in interphase cells, both chimeras support growth in suspension culture and concanavalin A capping and colocalize with the ConA cap but the Acanthamoeba chimera subsequently disperses more slowly than wild-type myosin and the smooth muscle chimera apparently not at all. Both chimeras also partially rescue chemotaxis. However, neither supports full development. Thus, neither regulation of myosin activity, nor regulation of myosin polymerization nor bipolar filaments is required for many functions of Dictyostelium myosin II and there may be no specific sequence required for localization of myosin to the cleavage furrow.
منابع مشابه
Single-headed myosin II acts as a dominant negative mutation in Dictyostelium.
Conventional myosin II is an essential protein for cytokinesis, capping of cell surface receptors, and development of Dictyostelium cells. Myosin II also plays an important role in the polarization and movement of cells. All conventional myosins are double-headed molecules but the significance of this structure is not understood since single-headed myosin II can produce movement and force in vi...
متن کاملMyosin-II tails confer unique functions in Schizosaccharomyces pombe: characterization of a novel myosin-II tail.
Schizosaccharomyces pombe has two myosin-IIs, Myo2p and Myp2p, which both concentrate in the cleavage furrow during cytokinesis. We studied the phenotype of mutant myosin-II strains to examine whether these myosins have overlapping functions in the cell. myo2(+) is essential. myp2(+) cannot rescue loss of myo2(+) even at elevated levels of expression. myp2(+) is required under specific nutritio...
متن کاملChimeras of Dictyostelium myosin II head and neck domains with Acanthamoeba or chicken smooth muscle myosin II tail domain have greatly increased and unregulated actin-dependent MgATPase activity.
Phosphorylation of the regulatory light chain of Dictyostelium myosin II increases V(max) of its actin-dependent MgATPase activity about 5-fold under normal assay conditions. Under these assay conditions, unphosphorylated chimeric myosins in which the tail domain of the Dictyostelium myosin II heavy chain is replaced by either the tail domain of chicken gizzard smooth muscle or Acanthamoeba myo...
متن کاملMultiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium.
Myosin II filament assembly in Dictyostelium discoideum is regulated via phosphorylation of residues located in the carboxyl-terminal portion of the myosin II heavy chain (MHC) tail. A series of novel protein kinases in this system are capable of phosphorylating these residues in vitro, driving filament disassembly. Previous studies have demonstrated that at least three of these kinases (MHCK A...
متن کاملMyosin II-independent cytokinesis in Dictyostelium: its mechanism and implications.
Similar to higher animal cells, ameba cells of the cellular slime mold Dictyostelium discoideum form contractile rings containing filaments of myosin II during mitosis, and it is generally believed that contraction of these rings bisects the cells both on substrates and in suspension. In suspension, mutant cells lacking the single myosin II heavy chain gene cannot carry out cytokinesis, become ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 115 Pt 22 شماره
صفحات -
تاریخ انتشار 2002